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Purpose. A genetic neural network (GNN) model was developed to
predict the phase behavior of microemulsion (ME), lamellar liquid
crystal (LC), and coarse emulsion forming systems (W/O EM and
O/W EM) depending on the content of separate components in the
system and cosurfactant nature.
Method. Eight pseudoternary phase triangles, containing ethyl oleate
as the oil component and a mixture of two nonionic surfactants and
n-alcohol or 1,2-alkanediol as a cosurfactant, were constructed and
used for training, testing, and validation purposes. A total of 21 mo-
lecular descriptors were calculated for each cosurfactant. A genetic
algorithm was used to select important molecular descriptors, and a
supervised artificial neural network with two hidden layers was used
to correlate selected descriptors and the weight ratio of components
in the system with the observed phase behavior.
Results. The results proved the dominant role of the chemical com-
position, hydrophile-lipophile balance, length of hydrocarbon chain,
molecular volume, and hydrocarbon volume of cosurfactant. The best
GNN model, with 14 inputs and two hidden layers with 14 and 9
neurons, predicted the phase behavior for a new set of cosurfactants
with 82.2% accuracy for ME, 87.5% for LC, 83.3% for the O/W EM,
and 91.5% for the W/O EM region.
Conclusions. This type of methodology can be applied in the evalu-
ation of the cosurfactants for pharmaceutical formulations to mini-
mize experimental effort.

KEY WORDS: GNNs; ANNs; phase behavior; microemulsion; co-
surfactant; molecular descriptors.

INTRODUCTION

Pharmaceutical colloids are attracting increasing interest
as vehicles for drug delivery and to provide bases for cosmet-
ics, hence the need to understand the formulation and stabi-
lization of these systems. Among the long line of colloidal
systems that have been either examined or exploited as po-
tential drug delivery systems are microemulsions (ME) and
lyotropic liquid crystalline systems.

MEs are isotropic, optically transparent, and thermody-
namically stable dispersions of oil and water stabilized by an
interfacial film of amphiphile molecules, i.e., suitable surfac-
tant or a suitable combination of surfactants with or without
a cosurfactant. They are spontaneously forming fluid systems

of low viscosity. Most of the pharmaceutical surfactants do
not lower the oil-water interfacial tension sufficiently to form
microemulsions, nor are they of correct molecular structure
(i.e., hydrophile-lipophile balance [HLB]). Thus, a weaker
amphiphile (cosurfactant) is added to further lower the inter-
facial tension between oil and water, influence the film cur-
vature, and fluidize the hydrocarbon region of the interfacial
film. The amphiphilic nature of low molecular weight alcohol
cosurfactants enables them to distribute between the aqueous
and oil phase thereby altering the chemical composition and
hence the relative hydro-/lipophilicity (1). Penders and Strey
pointed out the role of alcohol in microemulsions (2). They
found the alcohol to act as “cosurfactant” and as “cosolvent.”
1,2-Alkanediols were also used as cosurfactants to prepare
nontoxic MEs with lecithin to replace the conventional ali-
phatic alcohols (3).

Lyotropic liquid crystalline systems are formed when sur-
factants are treated with a solvent. Weak interactions be-
tween the amphiphilic surfactant and solvent molecules gov-
ern the formation of association structures with long-range
order known as lyotropic liquid crystals (4). The role of lyo-
tropic liquid crystals in the stabilization of various types of
pharmaceutical dispersal systems, as well as their application
in drug delivery, is well established (5).

Before a microemulsion or a lyotropic liquid crystal-
based system can be used for the delivery of therapeutic
agents it is essential to establish the phase behavior of the
particular combination of chosen components. One of the
most common methods of studying the phase behavior of
such systems is by constructing a phase diagram using Gibbs
triangle. However, as the formulation may contain more than
three components the complete phase behavior cannot be
represented using a triangular diagram and becomes even
more complicated as the number of the components increases
(6). The phase behavior of the pseudoternary system—ethyl
oleate: water: sorbitan monolaurate/polyoxyethlene 20 sorbi-
tan monooleate—as well as the effect of the 8 n-alcohol and
1,2-alknediol cosurfactants on the phase behavior of the origi-
nal pseudoternary system has been reported (7).

Artificial neural networks (ANNs) are computer pro-
grams designed to simulate the way in which the human brain
processes information. ANNs learn (or are trained) through
experience with appropriate examples, not from a prepro-
grammed set of rules. The behavior of a neural network is
determined by the transfer functions of its neurons, by the
learning rule, and by the architecture itself. We have used a
supervised network with a back-propagation learning rule
and multilayer perceptron (MLP) architecture. In this model
the inputs are fully connected to the hidden layer, and hidden
layer neurons are fully connected to the outputs. The pres-
ence of a hidden layer is a crucial feature that allows the
network to make generalizations from the training data. De-
tailed description of this type of ANN model has been pub-
lished (8–10). As testing large number of all possible combi-
nations of variables would be a tedious task, we have used a
genetic algorithm (GA) input selection (11–14). GA is a com-
putational model of evolution, random search algorithm that
uses selection and recombination processes to generate new
population samples with higher fitness.

The goal of this research was to develop an ANN model
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to predict the phase behavior of quinary microemulsion-
forming systems depending on the content of different com-
ponents in the system and the cosurfactant nature. A nonlin-
ear ANN model was used to correlate phase behavior of the
investigated systems with cosurfactant descriptors that were
preselected by a GA.

Pseudoternary phase diagrams were constructed follow-
ing an accurate and invariable experimental protocol under
identical laboratory conditions, thus fulfilling the require-
ments of successful QSAR modeling that parameters have
values that are obtained in a consistent manner.

EXPERIMENTAL

Materials

Ethyl oleate (EO) was used as the oil component
(Crodamol EO), sorbitan mono laurate (SML) as surfactant
component 1 (Crill1, HLB 4 8.6), and polyoxyethylene 20
sorbitan monooleate (PSMO) as surfactant component 2
(Crillet 4 super, HLB 4 15). EO, SML, and PSMO were
obtained form Croda Oleochemicals, New Zealand.
Deionised water was used as the aqueous phase. 1-Propanol,
1-butanol, 1-hexanol, and 1-octanol were purchased from
BDH (Poole, Dorset, UK) and were used as an alcohol co-
surfactants. 1,2-Propandiol (May and Baker, Dagenham,
UK), 1,2-pentanediol (Acros Organics, Geel, Belgium), 1,2-
hexanediol, and 1,2-octanediol (Lancaster Synthesis, More-
comb, UK) were used as 1,2 alkanediol cosurfactants.

Apparatus and Software

Phase contrast and polarized light microscopy were per-
formed using a Nikon Optiphot microscope (Nikon, Tokyo,
Japan). MS-Windows®-based artificial neural network simu-
lator software. Neural Networks™ (StatSoft Inc, Tulsa, OK)
was used. For calculating drug properties from molecular
structure, Pallas 2.1 (Compu Drug Int., San Francisco, CA)
and ChemSketch 3.5 freeware (ACD Inc., Toronto, Canada)
were used. Calculations were performed on a Pentium per-
sonal computer.

Construction of Pseudoternary Phase Diagrams

The detailed method used to construct the pseudoternary
phase diagrams of the cosurfactant-free system and systems
formulated with the 8 n-alcohol and 1,2-alkane diol cosurfac-
tants have been reported (7).

Collecting Data for ANN Training and Testing
(Sampling Theory)

The success of different sampling strategies (random,
systematic, and stratified) in characterizing phase behavior
was investigated using the pseudoternary phase diagram of
the cosurfactant-free system (7). To evaluate simple random
sampling, 171 samples were randomly picked by a scheme
that ensures that each sample had an equal probability of
being chosen. For the systematic sampling, the phase diagram
was overlaid with a grid spacing of 5% (w/w) over each of the
component axes. This gave a set of 171 vertices generated
within the body of the phase diagram (Fig. 1). For stratified
sampling, every fifth percentage change in component con-
tent was taken from the phase diagram, which was divided

into four regions (strata): ME, lamellar mesophase (LC), wa-
ter continuous coarse dispersions (O/W EM), and oil continu-
ous coarse dispersions (W/O EM). Samples proportional to
the percentage occupied by each stratum were chosen as fol-
lows: 38 samples from ME, 46 from LC, 72 from O/W EM,
and 15 samples from the W/O EM stratum. The percentages
occupied by the four different regions were ME 22%; LC
27%; O/W EM 42%; and W/O EM 9%.

Each sample was labeled according to the proportions of
surfactant blend, oil, and water in the mixture and matched
with the nature of the phase structure found for this compo-
sition. Samples were coded as +1 to signify the presence of a
particular system, and −1 to indicate its absence. Thus, a re-
gion consisting of ME would have values of +1, −1, −1, −1;
pure LC was −1, +1, −1, −1; W/O EM was −1, −1, +1, −1; and
O/W EM was categorized as −1, −1, −1, +1. ME and LC would
have values of +1, +1, −1, −1; whereas LC and O/W EM were
categorized as −1, +1, −1, +1. Values of −1, −1, +1, +1 would
indicate the existence of an unstable coarse emulsion. A per-
fectly trained network should recover such values for perfect
phase classification. Any deviation from +1 and −1 would
reflect error in the classification process.

Descriptor Generation and Analysis

The physical and chemical properties of a compound are
functions of its molecular structure. The major differences
between behavior profiles of organic chemicals are attribut-
able to physicochemical properties (15–19). A change in the
structure of a molecule usually produces an associated change
in its properties. Finding one or more molecular descriptors
or attributes that explain variations in biological activity or
physicochemical properties has resulted in the development
of quantitative structure property relationships. Such rela-
tionships, once quantified, can be used to estimate the prop-
erties of other molecules from the sketches of their structures
alone. Although some molecular descriptors can be deter-
mined experimentally, using computational methods to de-
rive them is generally much faster and more convenient. Ex-
perimental determination of such properties is time-
consuming and subject to large experimental variation and
errors.

A total of 18 descriptors including chemical composition
descriptors and calculated physicochemical descriptors for
each of the cosurfactants was used for the initial ANN model
(Table I). Descriptors were chosen based on their possible
contribution to both interfacial and/or bulk effect of the in-
vestigated cosurfactants, hence the overall phase behavior of
the system.

One of the difficulties with the large number of descrip-

Fig. 1. Vertices and grid spacing of phase diagram for the systematic
sampling strategy.
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tors is deciding which ones will provide the best regressions,
considering both goodness of fit and the chemical meaning of
the regression. Using a genetic algorithm for selection and
following a unit penalty factor of 0.000–0.004, the number of
inputs was reduced from 18 to 9. Input selection has reduced
the size and complexity of the network and focused the train-
ing on the most important data. This also reduced the training
time and improved network performance.

Data Analysis

Training Testing and Validation of the ANN Model

Before each training run both weights and biases were
initialized with random values. During training, the perfor-
mance of the ANN was evaluated with a testing data set. The
training and testing data set consisted of the original data
from phase diagrams containing 1-butanol, 1-hexanol, 1,2-
propanediol, and 1,2-hexanediol as cosurfactants. The total
number of data points consisted of 684 input/output sets and
was split randomly into 548 training sets and 136 test sets. The
results of the five runs were averaged. The training set was
used to train the network, and the testing set was used to
determine the level of generalization produced by the training
set and to monitor overtraining the network, each with cor-
responding root mean squared (RMS) error. To calculate the
RMS error, the individual errors were squared, summed, di-
vided by the number of individual errors, and then square
rooted.

For an unbiased estimate of the generalization error, the
ANN was presented with a validation data set that was not
used at all during the training process. Thus, the validity of
the model was evaluated with the validation data set, by pre-
dicting phase behavior for systems containing 1-propanol,
1-octanol, 1,2-pentanediol, and 1,2-octanediol as cosurfac-
tants.

Neural Network Analysis

The two forms of network analysis are model testing and
sensitivity analysis. Both methods were performed concur-
rently with the training of the network. The testing and train-
ing set RMS errors were used to determine overall quality of
a particular subset of descriptors. Training was stopped, at
each run, once the error performance of the network began to
deteriorate, based on the training and testing set errors, when
the training RMS error failed to improve over a given number
of epochs and the testing RMS error increased.

The second form of network analysis computes sensitivi-
ties of the network’s outputs with respect to each of its inputs.
ANNs compute the output as a sum of nonlinear transforma-
tions of linear combinations of the inputs. Sensitivity reports
show the sensitivity of the output variables, as a percentage,
to the changes in the input variables. If the direction of the
change in the output variable is always the same as the change
in investigated descriptor, then the average sensitivity is posi-
tive. The set of percentages reveals the effect that a change in
a particular input has on output.

RESULTS AND DISCUSSION

Sampling Strategy

To investigate the different sampling strategies, the ANN
with one hidden layer was trained by performing optimization
of number and size of the weights for neuron interconnec-
tions. The lowest error was obtained with six hidden neurons.
The highest coefficient of correlation was obtained with sys-
tematically sampled data. Traditionally, random sampling
plans have been preferred over systematic sampling plans be-
cause that avoids subjective selection of sample locations, but
systematic sampling more uniformly covered the entire sam-
pling area. The trained ANNs reproduced the phase diagram

Table I. Chemical Composition Descriptors and Physicochemical Descriptors Calculated from the Molecular Structure of Cosurfactants

Cosurfactanta n-propanol n-butanol n-hexanol n-octanol 1,2-propandiol 1,2-pentadiol 1,2-hexadiol 1,2-octadiol

HLB 7.48 7.00 6.05 5.10 9.38 8.43 7.95 7.00
N°C 3.00 4.00 6.00 8.00 3.00 5.00 6.00 8.00
LC 5.30 6.56 9.09 11.62 5.30 7.83 9.09 11.62
V 108.10 135.00 188.80 242.60 108.10 161.90 188.80 242.60
C (%) 59.96 64.82 70.53 73.78 47.35 57.66 60.98 65.71
H (%) 13.42 13.60 13.81 13.93 10.60 11.61 11.94 12.41
O (%) 26.62 21.59 15.66 12.29 42.05 30.72 27.08 21.88
MR 17.48 22.11 31.38 40.64 18.97 28.24 32.87 42.14
V 75.50 92.00 125.00 158.00 73.40 106.40 122.90 155.90
g 24.50 26.00 27.90 29.00 38.00 36.60 36.20 35.70
d20 0.80 0.81 0.82 0.82 1.04 0.98 0.96 0.94
Log P 0.34 0.88 1.94 3.00 −1.34 −0.28 0.25 1.32
MV 125.48 152.85 207.86 262.67 121.93 176.77 204.13 259.06
Log D 0.53 1.04 2.05 3.07 −0.71 0.31 0.82 1.84
Log(1/S) −0.40 0.20 1.50 2.80 −2.50 −1.20 −0.50 0.70

a HLB 4 hydrophile-lipophile balance value is a measure of the relative contributions of the hydrophilic and lipophilic regions of the molecule,
calculated according to Davis (21). Lc 4 maximum chain length of the hydrocarbon chain (A). V 4 volume of the hydrocarbon chain (A3)
both estimated according to Tanford and Duke (8). C (%) 4 weight percentage of carbon content in molecular mass. H (%) 4 weight
percentage of hydrogen content in molecular mass. O (%) 4 weight percentage of oxygen content in molecular mass. MR 4 molar
refractivity can be calculated according to the Lorentz-Lorentz equation. V 4 (cm 3/mol) molar volume. g 4 (dyne/cm) surface tension. d20n

4 (g/cm3) density. Log P 4 logarithm of the partition coefficient in octanol/water (22). MV 4 the molecular volumes (23) (Å3). Log D 4

distribution coefficient at pH 7.0 in octanol/water. Log(1/S) 4 S represent aqueous solubility at 25°C of cosurfactant at pH 7.0.
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with a coefficient of multiple correlation of 0.95–0.99 and with
the mean success of 0.975 (Table II).

ANN Models for Phase Behavior Prediction

In many problem domains, a range of input parameters is
available that may be used to train a neural network, but it is
not clear which of them is most significant or is needed at all.
The problem is more complicated when there are interdepen-
dencies between input parameters. The only method guaran-
teed to select the best input set was to train the network with
all possible input sets and all possible architectures, and then
to select the best.

In this study the ANN model was constructed in several
steps. The first step was to calculate physicochemical param-
eters as mathematical representations of chemical structure of
investigated alcohols and 1,2-alkanediols. These parameters
provided a description of the similarities and differences of
investigated alcohols. A total of 15 physicochemical descrip-
tors were calculated for the investigated cosurfactants. Com-
parison of the calculated descriptors of the homologue cosur-
factants shows that they depend on the length of the straight
hydrocarbon chain (R). As the length of R increases, the
values are increased, except for the HLB values that decrease
and for the density and the surface tension values of 1,2-
alkanediols that decrease with the length of straight chain
(Table I).

The subset of descriptors that best encodes the phase
behavior of a given system was found to reduce the number of
input variables, complexity and the size of the network, and to
improve the network’s prediction capabilities. MLP models
compute the output as a sum of nonlinear transformations of
linear combinations of the inputs. The number of weights and
hidden units increases linearly with the number of inputs. The
higher the dimensionality of the input space, the more train-
ing data sets are required. If the dimension of the input space
is high, the network uses almost all its resources to represent
irrelevant portions of the input space. Careful feature selec-
tion and scaling of the inputs reduces the complexity of the
problem, as well as the selection of the best neural network
model. To further reduce the amount of data and select the
best ANN architecture, a pruning method was applied simi-
larly to backward elimination in stepwise regression. Connec-
tions or units were eliminated during training based on unit
penalty factor (Table III) and minimal generalization error.

The best nonlinear GNN model for the prediction of
phase behavior was selected by comparing the prediction ob-
tained from several high-scoring models (Table IV). The
model has 14 inputs with unit penalty factor greater than
0.005. The results of ANN validation proved the dominant
role of the chemical composition (%C, %H, and %O), HLB,
number of carbon atoms, length of hydrocarbon chain, mo-
lecular volume, and hydrocarbon volume of the cosurfactant

in prediction. Once a subset of descriptors was found, the
descriptors were then correlated with the observed phase be-
havior using a nonlinear neural network. Network structure
was optimized by heuristic search. The criterion for judging
the best model was the rooted sum of mean squared error
(RMS) of model predictions. Within investigated cosurfac-
tants under identical conditions the phase behavior was ap-
proximated by a nonlinear combination of the percentages of
oil and water and surfactants-cosurfactant blend and chemical
composition, HLB, number of carbon atoms, length and vol-
ume of the hydrocarbon chain, molecular volume, and hydro-
carbon volume of the cosurfactant.

The results suggest that a small number of chemically
meaningful descriptors will provide the most predictive
model. Better results were obtained with two hidden layers. A
single hidden layer allows neurons to correlate improving ap-

Table II. Success of the Different Sampling Strategies in Character-
izing Phase Behavior

Sampling strategy ME LC O/W W/O

Random 0.98 0.97 0.95 0.96 0.965
Stratified 0.92 0.83 0.92 0.84 0.878
Systematic 0.99 0.98 0.98 0.95 0.975

0.963 0.927 0.950 0.916

Table III. Selection of the Inputs Based on the Unit Penalty Factor

Inputs

Unit penalty factor

0.0025 0.005 0.0075 0.01

Water (%) 1 1 1 1
Surfactant (%) 1 1 1 1
Oil (%) 1 1 1 1
Lc 1 1 1
NoC 1 1 1
H (%) 1 1 1
C (%) 1 1 1
O (%) 1 1 1
HLB 1 1
V 1 1
MV 1 1
logP 1 1
g 1 1
LogD 1 1
LogS 1
Molar refraction 1
V 1
d20 1
S 18 14 10 3

Table IV. Overall Quality of Several High Scoring GNN Models
Evaluated by a Cost Function

ANNsa N RMStr RMScv RMSval UP

Two hidden layers

25-20-12-4 25 0.333 0.163 0.820 0.000
18-17-10-4 18 0.303 0.256 0.785 0.0025
14-14-9-4 14 0.235 0.231 0.740 0.0050
10-6-4-4 10 0.448 0.349 0.955 0.0075

One hidden layer

25-16-4 25 0.306 0.486 0.832 0.000
18-11-4 18 0.227 0.297 0.827 0.0025
14-9-4 14 0.363 0.272 0.807 0.0050
10-9-4 10 0.375 0.595 0.858 0.0075
3-3-4 3 0.604 0.585 0.864 0.0100

Note. N − number of inputs. RMS − rooted mean squared error.
UP − unit penalty factor. COST − cost function. Bold numbers are
smallest validation RMS.
a Number of inputs − hidden neurons − outputs.
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proximation at one point but worsening it elsewhere. On the
other hand, an ANN with two hidden layers approximates the
desired function by separating the decision space. For more
complicated target functions, especially those with two hills or
valleys (+1 and −1), it is useful to have several units in the
second hidden layer. Each unit in the second hidden layer
enables the net to fit a separate hill or valley. Consequently,
an MLP with two hidden layers could yield an accurate ap-
proximation with fewer weights than an MLP with one hidden
layer (20). Some of the neurons from the first layer parti-
tioned the input space into regions. For each region a neuron
in the second hidden layer combined the output of corre-
sponding hidden layer neurons so that it computes the desired
function within the region. In this way the effect of the neu-
rons was isolated and the approximation in different regions
was adjusted independently. Two hidden layers with 14 and 9
hidden neurons were enough to achieve good convergence on
the validation data. The best model in this study had 14 in-
puts, 14 and 9 hidden neurons, and 4 outputs. For the systems
included in the training set data, the different regions were
reproduced with an accuracy of 98.69% for ME, 99.29% for
LC, 98.59% for O/W EM, and 98.99% for W/O EM.

For the validation data set, various critical values (0, ± 0.5
and ± 0.75) were used to classify these data (Table V). That is,
if an output value was greater than 0 the corresponding region
was assumed to be present, and if less than 0 then absent. In
the most stringent case, a region was assumed present if the
output was greater than 0.75 and absent if less than 0.75. This
approach was adapted in an attempt to improve the predic-
tion reliability. Predictions were counted correct only when
the phase behavior in a predicted region was in agreement
with the experimental finding for that particular blend of

components. For the best ANN model (14-14-9-4, UP 0.0050),
if a critical value of zero was used, 82.5%–90.7% of data was
classified correctly. Using critical value of 0.5, 82.5%–91.0%
of data were classified correctly. With a more rigorous critical
value of 0.75, 82.2%–91.5% data were classified correctly.
Increasing the critical values of classification had little influ-
ence on the success of prediction for the systems with 25, 18,
and 14 inputs, but significantly improved the reliability of
prediction for the ANNs with 10 inputs. Nevertheless, the
mean percentage success calculated over the validation data is
very encouraging, given that only about 10% of the tetrahe-
dron was sampled.

The best ANN model with a critical value of 0.75 pre-
dicted the phase behavior with accuracy of 82.2% for ME
region, 87.5% for the LC region, 83.3% for the O/W EM,
region, and 91.5% for W/O EM region.

Figure 2 shows the predicted phase triangles for systems
formulated with 1-propanol, 1-octanol, 1,2-pentanediol, and
1,2-octanediol. For the 1-propanol triangle the network was
successful in predicting a phase triangle with three regions
only, namely O/W EM, W/O EM, and ME. The predicted
phase triangle was in agreement with the experimental find-
ing that incorporating a short chain alcohol with three to four
carbon atoms perturbed the surfactant blend long-range or-
der and subsequently substituted the LC region with a bicon-
tinuous ME. Another interesting finding is that the predicted
ME region showed that incorporation of 1-propanol balanced
the surfactant blend favoring the formation of a balanced ME
(24). For the 1-octanol phase triangle the boundary between
the LC and the O/W EM was predicted with only slight dis-
crepancy from the experimental boundary. The same holds
true for the O/W-W/O EM boundary. The size of the pre-

Table V. Accuracy in Prediction; Percentage of Wrong Classified Data for Different Regions, Different Unit Penalty Factor, and Different
Network Structure

Critical value

0 0.5 0.75

ANN
model UP Cosurfactant

Region Region Region

ME LC O/W W/O %W ME LC O/W W/O %W ME LC O/W W/O %W

25-20-12-4 0.0000 n-C3 26 0 29 4 14.8 21 0 30 7 14.5 20 0 34 9 15.8
n-C8 19 16 30 12 19.3 19 15 31 12 19.3 18 15 30 12 18.8
1,2-C5 16 17 8 9 12.5 14 17 8 9 12.0 15 17 8 9 12.3
1,2-C8 13 16 21 19 17.3 13 11 21 19 16.0 13 11 21 19 16.0
%W 18.5 12.3 22.0 11.0 15.9 16.8 10.8 22.5 11.8 15.4 17.0 8.5 23.5 13.3 15.7

18-17-16-4 0.0025 n-C3 22 0 30 6 14.5 20 0 30 6 14.0 20 0 31 6 14.3
n-C8 20 30 40 19 27.3 20 27 40 19 26.5 15 23 40 18 24.0
1,2-C5 12 6 9 24 12.8 13 16 9 23 15.3 13 16 10 22 15.3
1,2-C8 28 15 16 35 23.5 29 15 14 34 23.0 29 15 14 34 23.0
%W 20.5 12.8 23.8 21.0 19.5 20.5 14.5 23.3 20.5 19.7 19.3 13.5 23.8 20.0 19.1

14-14-9-4 0.0050 n-C3 18 1 21 6 11.5 18 10 19 6 13.3 18 10 19 6 13.3
n-C8 24 10 32 9 18.8 23 9 32 8 18.0 23 9 30 8 17.5
1,2-C5 11 16 10 10 11.8 11 16 9 10 11.5 11 16 9 10 11.5
1,2-C8 17 21 15 12 16.3 18 15 10 12 13.8 19 15 9 10 13.3
%W 17.5 12.0 19.5 9.3 14.6 17.5 12.5 17.5 9.0 14.1 17.8 12.5 16.8 8.5 13.9

10-6-4-4 0.0075 n-C3 77 100 49 68 73.5 24 0 32 5 15.3 22 0 34 5 15.3
n-C8 97 74 53 68 73.0 24 4 32 5 16.3 24 4 45 13 21.5
1,2-C5 67 83 75 65 72.5 6 17 21 13 14.3 6 17 19 13 13.8
1,2-C8 52 89 81 71 73.3 10 11 12 12 11.3 11 11 12 12 11.5
%W 73.3 86.5 64.5 68.0 73.1 16.0 8.0 24.3 8.8 14.3 15.8 8.0 27.5 10.8 15.5

Note. n-C3 4 n-propanol. n-C8 4 n-octanol. 1,2-C5 4 1,2-pentandiol. 1,2-C8 4 1,2-octandiol. %W 4 % of wrong classified data.
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dicted ME region was significantly greater than that deter-
mined experimentally. Samples formulated within this region
were found to behave as Winsor II ME were a water-in-oil
ME exist in equilibrium with excess of water. Overall, with
respect to the ME region, the network’s prediction had rea-
sonable success. The network successfully regenerated the LC
region, indicating clearly that, unlike with short-chain alco-
hols (1-propanol), incorporation of a medium-chain alcohol
failed to disturb the long-range order of the surfactant blend
with subsequent emergence of a multiphase LC region.

For the 1,2-pentanediol phase triangle the network cor-
rectly classified most of the data points in the ME, W/O EM,
and O/W EM regions with mistakes confined to the ME–LC
boundary. The ME region was predicted to be balanced, with
an almost equal preference of the surfactant blend for both
the oily and aqueous phases. These predictions were in good
agreement with the experimental findings. Predictions for the
1,2-octanediol system were encouraging, with the network
successfully generating the four regions. The predicted ME
region was shifted toward the oil apex of the phase triangle,

suggesting that a cosurfactant with eight carbon atoms would
be too lipophilic to alter the surfactant monolayer properties,
but may instead decrease the lipophilicity of the oily phase.
The experimentally produced ME region was also shifted to-
ward the oil apex, but the ME had greater tendency to solu-
bilize water.

CONCLUSION

This study evaluates the influence of the cosurfactant
nature on the phase behavior of five component systems and
can be applied as a preliminary evaluation of cosurfactants for
pharmaceutically acceptable drug delivery systems to mini-
mize experimental effort.

The used GNN has been proven to represent a statisti-
cally acceptable model to predict phase behavior depending
on the content of separate components in the system and the
cosurfactant nature. The training process required 171 data
points form each pseudoternary phase diagram and 11 phys-

Fig. 2. GNN-predicted phase triangles for four surfactant/cosurfactant systems from the validation set with (a) n-propanol, (b)
n-octanol, (c) 1,2-pentandiol, and (d) 1,2-octandiol as cosurfactants.
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icochemical parameters related to the cosurfactant structure
that can be easily calculated. The model was evaluated and
the results have shown a fairly good degree of reliability. It
can provide useful tools for the development of ME-based
drug delivery systems.
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